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Abstract

In engineering applications where the use of lightweight structures is important, the introduction of a viscoelastic core

layer, which has high inherent damping, between two face sheets, can produce a sandwich structure with high damping.

Sandwich structures have the additional advantage that their strength to weight ratios are generally superior to those of

solid metals. So, sandwich structures are being used increasingly in transportation vehicles. Knowledge of the passive

damping of sandwich structures and attempts to improve their damping at the design stage thus are important. Some

theoretical models for passive damping in composite sandwich structures are reviewed in this paper. The effects of the

thickness of the core and face sheets, and delamination on damping are analyzed. Measurements on honeycomb–foam

sandwich beams with different configurations and thicknesses have been performed and the results compared with the

theoretical predictions.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A sandwich structure consists of three elements, the face sheets, the core and the adhesive interface layers.
The greatest advantage of sandwich structures is that optimal designs can be obtained for different
applications by choosing different materials and geometric configurations of the face sheets and cores. By
inserting a lightweight core between the two face sheets, the bending stiffness and strength are substantially
increased compared with a single-layer homogenous structure, without adding much weight. When the beam
or plate undergoes flexural vibration, the damped core is constrained primarily to shear. This shearing causes
energy to be dissipated and the flexural motion to be damped.

Since the late 1950s many papers have been published on the vibration of sandwich structures. The
Ross–Ungar–Kerwin model is one of the first theories which was developed for the damping in sandwich
structures [1–4]. In Kerwin’s initial study, an analysis was presented for the bending wave propagation and
damping in a simply supported three-layer beam [1]. One of the limitations of this analysis is that the bending
stiffness of the top layer must be much smaller than that of the bottom layer. Ungar generalized the analysis in
the earlier study and derived an expression for the total loss factor of sandwich beams in terms of the shear
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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and structural parameters [3]. In extending the work of Kerwin, DiTaranto derived a sixth-order linear
homogeneous differential equation for freely vibrating beams having arbitrary boundary conditions [5–7]. In
this model, modes are completely uncoupled, which greatly simplifies the general forced vibration problem.
Mead and Markus modified the theory and studied different boundary conditions in terms of the transverse
displacement [8,9]. In another study, Yan and Dowell derived a set of five fourth-order partial differential
equations using the principle of virtual work in the theory of elasticity [10].

All the models discussed so far only consider the contribution of the damping in the viscoelastic core to the
total damping in the entire structure by using the complex form of the shear modulus of the core. An
advantage of the use of complex shear modulus is that the differential equations only contain the even-order
terms. So they are easy to solve. Mead conducted a comprehensive study on the comparison of these models
and studied the effects of longitudinal inertia and shear deformation of the face sheets [11].

Models derived by Mindlin’s theory and Timoshenko’s theory both lead to a fourth-order differential
equation. In Refs. [12,13] Nilsson states that due to the frequency dependence of sandwich structure
properties, solutions of the fourth-order differential equation agree well with measurements at low frequency.
However, as the frequency increases, the calculated results disagree strongly with measurements. Nilsson used
Hamilton’s principle to derive a sixth-order differential equation governing the bending of sandwich beams
and studied boundary conditions for free, simply supported and clamped beams. The behavior of a sandwich
structure in the low-frequency region is determined by pure bending of the entire structure. In the middle-
frequency region, the rotation and shear deformation of the core become important. At high frequencies, the
bending of the face sheets is dominant.

In the recent research, cores made of either honeycomb or solid viscoelastic material have been
studied [12–16]. The core in this particular study was made of paper honeycomb filled with polyurethane
(PUR) foam. The honeycomb material is expected to enhance the stiffness of the entire structure, while the
foam improves the damping. Jung and Aref reported that sandwich structures with combined
honeycomb–foam cores have higher damping than those with individual honeycomb or solid viscoelastic
cores [17]. However, Jung and Aref used a static hysteretic damping model, so damping ratios are independent
of frequency. This conclusion is obviously not valid. In this paper, the frequency dependence of damping in
sandwich beams with foam-filled honeycomb cores is analyzed, and the effects of thickness of the face
sheets and core, and delamination on damping are studied. Most of the earlier models ignore the bending
and extensional effects in the core. However, this assumption is only valid for soft thin cores. In this
paper, both the bending and shear effects are considered. And the shear stresses are continuous across the
face sheet–core interfaces.
2. Effects of thickness and delamination

In the Ross–Ungar–Kerwin model [2,3,18,19], the loss factor is given by the following formula:

Z ¼
bYX

1þ ð2þ Y ÞX þ ð1þ Y Þð1þ b2ÞX 2
, (1)

where

X ¼
Gb

p2tc

S;
1

Y
¼

EtIt þ EbIb

d2
S; S ¼

1

EtAt

þ
1

EbAb

, (2)

b is the loss factor of the viscoelastic material, and d is the distance between the neutral axes of the two face
sheets, as shown in Fig. 1. E, I and A represent the Young’s modulus, moment of inertia, and cross-sectional
area. X and Y are the shear and structural parameters, respectively. Subscripts t and b denote the top and
bottom face sheets, and c denotes the core.

Substituting S in the expression for Y, we have

Y ¼
3rð1þ rÞ

1þ r3
; r ¼

tt

tb

. (3)
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Differentiating the loss factor with respect to the structural parameter Y gives

qZ
qY
¼ bX

1þ 2X þ ð1þ b2ÞX 2

½1þ ð2þ Y ÞX þ ð1þ Y Þð1þ b2ÞX 2�2
40, (4)

which is always positive. That means the loss factor is a monotonically increasing function of the structural
parameter Y.

Setting

dY

dr
¼ 3

1þ 2r

1þ r3
�

3r2ðrþ r2Þ

ð1þ r3Þ2

� �
¼ 0, (5)

we obtain r ¼71. So when r ¼ 1, the loss factor has a maximum value. Then we can define tt ¼ tb ¼ tf, where
the subscript f stands for the face sheets. In this paper, only symmetric sandwich structures have been studied,
as shown in Fig. 1.

Similarly, by taking the derivative of the loss factor Z with respect to the shear parameter X, an optimal
value of the shear modulus G can be calculated to obtain maximum damping. That means, in an intermediate
range of core shear modulus value, the beam or plate damping has its highest value.

Fig. 2 illustrates some of the samples studied. The material for the face sheet is a carbon fiber-reinforced
composite. The Young’s modulus of such a material aggregated with epoxy is 60GPa, similar to that of
aluminum. So it is very stiff. Paper honeycombs are manufactured by processing paper with resin to make it
water resistant. This produces a low-cost core, but one which has very good mechanical properties. PUR
foams have low thermal conductivity and diffusion coefficients, giving them very good thermal insulation
properties. Another advantage of PUR foams is that they can be produced in finite size blocks as well as in
situ, thus providing an integrated manufacturing process in conjunction with the manufacture of the sandwich
elements [20].
dtc

tf

y

z

tf

b

0

Fig. 1. Cross-section of a symmetric sandwich beam.

Fig. 2. Foam-filled honeycomb cores and sandwich beams.
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From a static point of view, the bending stiffness of a sandwich beam can be expressed as

D ¼

Z
Ez2 dA ¼

Z �tc=2

�tf�ðtc=2Þ
Ef z2bdzþ

Z tc=2

�tc=2
Ecz

2bdzþ

Z tfþðtc=2Þ

tc=2
Ef z2bdz

¼ 2

Z tfþðtc=2Þ

tc=2
Ef z2bdzþ 2

Z tc=2

0

Ecz2bdz

¼ b
Ef t3f

6
þ

Ef tf d2

2
þ

Ect
3
c

12

" #
¼ 2Df þD0 þDc, ð6Þ

where b is the width of the beam, tf and tc are the thicknesses of the face sheet and core, Ef and Ec are the
Young’s moduli of the face sheet and core, and d ¼ tf+tc. Df is the bending stiffness of a face sheet about its
own neutral axis, D0 is the stiffness of the face sheets associated with bending about the neutral axis of the
entire sandwich, and Dc is the stiffness of the core [20].

We will compare two cases in order to study the effect of the thicknesses of the face sheets and core on the
damping.
1.
 Since the core is stiff in shear but soft generally, its Young’s modulus is much smaller than that of the face
sheet. By assuming Ec � Ef and D � 2Df þD0, the normal stresses in the face sheets and the shear stresses
in the core are

sf 1 ¼
MzEf

2Df 1 þD01
; tc1 ¼

TEf tf 1d1

2ð2Df 1 þD01Þ
, (7)

where M and T are the bending moment and the shear force, respectively.

2.
 If we assume not only that Ec � Ef but also that the face sheets are thin, tf 5tc, then, D � D0. The normal

stresses in the face sheet and the shear stresses in the core become

sf 2 ¼
M

tf 2d2
; tc2 ¼

T

d2
(8)

and the normal stresses in the core and the shear stresses in the face sheets are zero. So the face sheets
carry bending moments as tensile and compressive stresses and the core carries transverse forces as shear
stresses.

Comparing the two cases, and assuming they have the same core thickness tc, bending moment M, and
shear force T, we obtain

tc1

tc2
¼

Ef tf 1d1

2ðEf tf 1d2
1=2Þ þ ðEf t3f 1=6Þ

d2 ¼
d1d2

d2
1 þ ðt

2
f 1=3Þ

o1 (9)

and

sf 1

sf 2
¼

MzEf

ðEf tf 1d2
1=2Þ þ ðEf t3f 1=6Þ

tf 2d2

M
¼

ztf 2d2

ðtf 1d
2
1=2Þ þ ðt

3
f 1=6Þ

.

Since

maxfsf 1g ¼ sf 1 z ¼ �
d1 þ tf 1

2

� �
,

then

max sf 1

� �
sf 2

¼
ð2tf 1 þ tcÞtf 2d2

tf 1d2
1 þ ðt

3
f 1=3Þ

¼
2tf 1t2f 2 þ 2tf 1tf 2tc þ t2f 2tc þ tf 2t2c

4
3
t3f 1 þ 2t2f 1tc þ tf 1t2c

.
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Let a ¼ ðtf 1=tf 2Þ, and b ¼ ðtc=tf 2Þ, then

maxfsf 1g

sf 2
¼

2aþ 2abþ bþ b2

4
3
a3 þ 2a2bþ ab2

o1 if 1:247 oaob: (10)

It is easy to prove that Eq. (10) is a monotonically decreasing function of a and b.
Eqs. (9) and (10) show that the thinner the face sheets are, the larger is the shear in the core and the normal

stress in the face sheets. This means that, if we increase the thickness of the face sheets by a factor of more than
1.247, then the shear in the core becomes more constrained. The direct stress in the face sheets also becomes
smaller because the cross-sectional area is larger.

Consider the dynamic case. Vibration energy can propagate through a sandwich structure mainly in the
form of bending waves and shear waves. Since bending waves create substantial transverse displacements,
bending waves couple best with the surrounding fluid and are mostly responsible for the sound radiation.
However, as shown before, the shear deformation in the core is significant in sandwich structures in
comparison with homogeneous materials. So shear waves must also be considered. Using either Hamilton’s
principle or the impedance method, a sixth-order equation can be derived to solve the speed for wave
propagation in sandwich beams, Cp [12,21]:

mðJo2 � k0GAÞo2C6
p �mðDþ 2Df þ k0GAJÞo6C4

p

þðk0GAD� 2Df Jo2Þo4C2
p þ 2Df Do6 ¼ 0:

(11)

Here m is the mass per unit length (kg/m), J is the mass moment of inertia per unit length (kgm), k0 is the shear
coefficient, which is 5

6
for a beam with a rectangular cross-section, G is the shear modulus of the core, and, A is

the cross-sectional area.
Fig. 3 compares the variation of the bending wave speed in two sandwich beams with different core

materials. Case (a) corresponds to a single foam core, and case (b) a foam-filled honeycomb core. The Young’s
moduli of the foam core and the foam-filled honeycomb core are 10.16 and 36.4MPa. In each plot, the solid
curve represents the speed of wave propagation including the effects of shear deformation. The upper and
lower straight lines depict the pure bending wave speeds of the entire sandwich structure and of the two face
sheets only, respectively. Both the plots demonstrate that at low frequencies, the speed of wave in the sandwich
beam is close to the speed of pure bending wave in the entire structure, while at high frequencies, it approaches
the speed of the pure bending wave only propagating in the face sheets. Comparing the two plots, it can be
seen that, for the sandwich beam with a single foam core, the shear deformation is only effective in the middle-
frequency range. For a sandwich beam with a foam-filled honeycomb core, however, the shear deformation is
still effective in the high-frequency range, because the honeycomb increases the stiffness of the core.

Therefore, in the low-frequency region the energy is dissipated by pure bending D � D0ð Þ. With increasing
frequency, more energy is dissipated due to the increased normal-to-shear coupling, in which the motion of the
face sheets is mostly transformed into the shear deformation and in-plane waves in the core. Because of
the viscoelastic property of the foam, the damping in the core is greater than that in the face sheets. Thus the
damping has an increasing trend with frequency.

At high frequencies, if the core is very soft compared with the face sheet, the bending stiffness of the face
sheets about their own neutral axes is dominant and the total damping is determined by the face sheets
D � 2Df

� �
. That means that the damping reaches a maximum and decreases again at high frequency [12].

However, for the material studied, the honeycomb increases the stiffness of the core compared with a core
made only of foam. So the normal-to-shear coupling is still effective in the high-frequency range and thus the
damping is increased substantially.

Therefore, it can be concluded that with an increase in the face sheet thickness, the damping in the
low- and high-frequency ranges is lower, but it is still high in the middle-frequency range. On the other hand,
if the thickness of the core is doubled, the damping is very much increased in the middle- and high-
frequency ranges.

Damage is another mechanism which causes increased damping. Delamination introduces friction in the
unbounded region of the interface. And the damping increases with the size of the delamination. Meanwhile,
increased damping leads to lower natural frequencies. This effect is significant in the high-frequency range [22].
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Fig. 3. Dispersion relation for sandwich beams with (a) a single foam core with Young’s modulus of 10.16MPa, and (b) a foam-filled

honeycomb core with Young’s modulus of 36.4MPa. —— speed of wave in sandwich beam; yy, pure bending wave speeds of the entire

sandwich beam; – – –, pure bending wave speeds of the face sheet.
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In Ref. [23] a finite element program developed for a sandwich cantilever beam using NASTRAN shows that
the damping increases with increasing delamination. Our experimental results presented in this paper are seen
to be consistent with this prediction.

Delamination affects the stiffness of sandwich beams as well. The bending stiffness expression, Eq. (6), is
derived for undamaged sandwich beams. For beams with delamination, the integral limits become smaller and
the resulting bending stiffness is reduced substantially. If there is delamination on both sides of the beam, the
bending stiffness is reduced more than when there is delamination only on one side. This prediction is the same
as Frostig’s model based on high-order elastic theory [24].
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3. Experiments

We studied three intact and six delaminated beams. Their configurations are listed in Tables 1 and 2. All the
other dimensions of the delaminated beams are the same: length 609.6mm, width 25.4mm, core thickness
6.35mm and face sheet thickness 0.33mm. Fig. 4 illustrates a beam with 50.8mm delaminations on both sides.
3.1. Experimental setup

Fig. 5 shows the experimental setup for the damping measurements on sandwich composite beams. The
beams were excited with white noise by a shaker mounted at the middle of the beam. The density of the
sandwich material is 278 kg/m3 and the mass of the beam A is 27.33 g. For such a light structure a general
purpose accelerometer is not applicable, because the effect of mass loading is significant [25,26]. Therefore, a
Polytech laser vibrometer was employed to measure the beam response. The frequency-response functions
measured by a B&K accelerometer-type 4570 show that the resonance frequencies are 10% lower than those
Table 1

Configurations of intact beams

Intact beams Length (mm) Width (mm) Core thickness (mm) Face sheet thickness (mm) Structural parameter, Y

Beam A 609.6 25.4 6.35 0.33 1229

Beam B 609.6 25.4 6.35 0.66 338

Beam C 609.6 25.4 12.7 0.33 4627

Table 2

Configurations of beams with delamination

Delaminated beams Delamination length (mm) (percentage of length) Delamination location

Beam D 12.7 (5) One side

Beam E 12.7 (5) Both sides

Beam F 25.4 (10) One side

Beam G 25.4 (10) Both sides

Beam H 50.8 (20) One side

Beam I 50.8 (20) Both sides

Fig. 4. A beam with 50.8mm delaminations on both sides.



ARTICLE IN PRESS

Fig. 5. Experimental setup for damping measurements.
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measured by the laser vibrometer. The B&K PULSE system was used to analyze the signals with the Dual
FFT mode and the damping ratio was determined directly.

At low frequencies, the coherence between the response and force is very poor for lightweight structures,
because the surrounding airflow affects the excitation-response relationship. So it is difficult to obtain
satisfactory measurements for the first mode. One solution is to excite the structures and measure the
corresponding responses in extremely narrow frequency bands. In practice, both 3.125Hz band and 1.63Hz
bands were used to excite the structures and make measurements using the zoom FFT mode. Since the beams
were excited in a very narrow band, in which the excitation energy was concentrated, the airflow influence is
negligible. In that way the coherence was increased up to 0.977.
3.2. Experimental results

Figs. 6 and 7 compare the receptance frequency-response functions and damping ratio of beams with single-
and double-layer face sheets. Double-layer face sheets add 13% more mass to the beams. Fig. 6 shows that the
vibration properties do not change very much. However, from Fig. 7 we can see that, as expected, the damping
in beam B is lower than that in beam A (see Table 1) in the low- and high-frequency ranges, because the
thicker face sheets constrain the deformation of the core in beam B more than in beam A. However, in the
middle-frequency range, the damping ratio reaches its maximum value.

Figs. 8 and 9 compare the receptance frequency-response functions and damping ratio in beams A and C.
The density of the core is 156 kg/m3. So a core which is twice as thick adds 56% more mass to the beam. Then
the natural frequencies shift dramatically to lower frequencies. And the damping increases, especially in the
middle- and high-frequency ranges.

Figs. 10 and 11 show the receptance frequency-response functions and damping ratio of the intact beam A
and the delaminated beam D. From Fig. 11 it can be seen that the effect of delamination is more obvious in the
high-frequency range. The damping increases as frequency increases.
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Figs. 12 and 13 show the damping ratios of the delaminated beams. With 5% delamination, the damping of
each mode increases evenly. With 10% delamination, the damping ratio of the second mode is seen to be very
high. With 20% delamination, both the first and the second modes have very high damping. Beams with
delaminations on both sides have more damping than those with delamination only on one side.

The fundamental frequency of a cantilever beam is given by

f 1 ¼
3:5160

2p

ffiffiffiffiffiffiffiffiffi
EI

mL4

r
, (12)
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where m is the mass per unit length and L is the length of the beam. Then the equivalent Young’s modulus can
be obtained by measuring the fundamental frequencies of the intact and delaminated sandwich beams. Fig. 14
shows the effect of delamination on the equivalent Young’s modulus.

3.3. Discussion

First of all, it is worth noticing that high damping is not the only criterion for noise and vibration control.
The overall effects of many factors such as mass, stiffness, damage tolerance and so on have to be considered
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as well. High damping is usually associated with relatively low stiffness. So the trade-off between the
requirement for low vibration levels and strength and stiffness must be analyzed during the design stage.

As discussed before, the system loss factor Z reaches a maximum value when the shear modulus of the core
has an optimal value in the intermediate range. In the Ross–Ungar–Kerwin model, the shear parameter X is
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inversely proportional to the core thickness tc. This means that only when the core thickness is also in an
optimal range, can the damping reach a maximum value. He and Rao reported the same prediction using a
numerical simulation [27]. However, the loss factor also depends on the total bending stiffness which is also
affected by the core thickness. Mead proved that the loss factor Z is much less sensitive to the change of the
shear parameter X when the structural parameter Y is large [28]. The shear parameter is then in a much wider
range of the optimum value for maximum Z. In He and Rao’s study, the core is thinner than the face sheets
and Y ¼ 27. However, for the beams studied in this paper, the face sheets are much thinner than the cores. So
the structural parameters are large as listed in Table 1.

In addition, Mead presented the relationship between the maximum loss factor Zmax and the structural
parameter Y:

Zmax ¼
bY

2þ Yð Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Y Þð1þ b2Þ

q . (13)

Taking the derivative of Zmax yields:

dZmax

dY
¼

b 2þ Y þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Y Þð1þ b2Þ

q� �
� bY 1þ ð1þ b2Þ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Y Þð1þ b2Þ

q� �� �

2þ Y þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Y Þð1þ b2Þ

q� �2 ¼
A

B
. (14)

The denominator B is always positive. The numerator A:

A 4b 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Y Þð1þ b2Þ

q
� Y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

1þ Y

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q2
4

3
5

¼ b 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Y Þð1þ b2Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Y Þð1þ b2Þ

q� �

¼ b 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Y Þð1þ b2Þ

q� �
40:

(15)

So the derivative (14) is always positive. This means that the loss factor increases monotonically with
increasing value of Y, if other parameters are fixed. The theoretical analysis given in Section 2 and the
experimental results presented in this paper agree with Mead’s prediction.

4. Conclusions

Several theoretical models for the damping of sandwich structures have been reviewed. The frequency
dependence of damping was analyzed for foam-filled honeycomb sandwich beams, in which the face sheets are
much thinner than the core, or the structural parameters are large. The effects of thickness and delamination
were studied. If the face sheet thickness increases, the damping in the low- and high-frequency ranges is lower,
but it remains high in the middle-frequency range. If the thickness of the core increases, the damping is
increased in the middle- and high-frequency ranges. Delamination introduces more friction in the composite
beam structure and thus makes the damping increase. However, delamination also reduces the stiffness as well
as the natural frequencies of sandwich structures. Experiments on beams with different configurations and
with delamination were carried out. The experimental results are consistent with the analytical predictions.
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